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We subject the primary sequence of proteins gathered from the Structural Classification of Proteins �SCOP�
database to a discrete wavelet transform �DWT� analysis to search for predictors of secondary structures. We
use proteins with both alpha helices and beta sheets �the A /B, A+B databases from SCOP�. The amino acids
composing the protein are converted to their hydrophobicity values using three hydrophobicity scales. Results
prove to be independent of the scale used. Using a DWT multiresolution decomposition, each protein is coarse
grained, in effect, creating snapshots of each protein at multiple scales. For each protein, a control data set is
formed by generating random realizations that remove the positional informational in the sequence but still
contain the same amino acid frequencies. Regions of salient hydrophobicity in the protein sequence are
identified by comparing the transforms of the original sequence with those of the control set, at each resolution.
We find significant matching between regions of salient hydrophobicity and the locations of secondary struc-
ture along the amino acid chains. We calculate the sensitivity, specificity, and Matthews correlation to quantify
the agreement between the wavelet detected structures and the real protein. In addition we are able to distin-
guish between the morphologically different subsets, A /B and A+B. We also construct a correlation function
based on the DWT that correlates quasilocalized structures at lengths in wavelet space. Through a similar
comparison to the control data sets, features in this space-scale correlation are identified that show correspon-
dence to the typical lengths of the secondary structures.
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I. INTRODUCTION

Despite advances made in both biophysical theory and
computational power, a satisfactory solution to the protein
folding problem remains out of reach �1�. The function of a
protein is determined by its three-dimensional structure that
is in turn determined by its amino acid sequence. However,
this sequence-structure relationship is very complex and not
fully understood. At present, there are two main approaches
to try to resolve the problem. The first is based on direct
calculation of the positions of the atoms in the protein using
molecular dynamics or Monte Carlo simulations. Progress
has been made in this approach as massively parallel com-
puters and smart algorithms are applied to the problem �2�.
The vast number of potential structures that need to be ex-
plored for a given protein make these direct calculation tech-
niques difficult and computationally expensive. The second
general approach is to use a knowledge-based algorithm for
attempting to determine a protein’s structure or function
based on some measure of the similarity of its sequence to
those of known proteins. These approaches require that
learning sets be formed by training the algorithm on a large
number of known sequences. The learning set is fed into a
algorithm that then predicts the output state of a given amino
acid within the chain. These methods rely on statistical prob-
abilities derived from large sets of experimentally deter-
mined proteins, and they largely ignore the fundamental
forces governing the dynamics of protein folding �3�.

An approach that is seeing increased attention is the use
of statistical analysis to uncover periodicities, correlations, or

other implicit order in the one-dimensional amino acid se-
quence. For instance, Tiwari et al. have used Fourier meth-
ods to predict genomic sequences �4�. Evidence for nonran-
domness in the primary sequence was found in 1996 using
random walk techniques by Irbacket et al. �5�. Clustering of
protein structures using hydrophobicity has been detected us-
ing Z-curve representations and fractal analysis �6�. Weiss
and Herzel found hydrophobicity autocorrelation functions
to be strongly oscillations and the �-helix propensity auto-
correlation function to be monotonously decaying in a large
set of nonhomologous protein sequences �7�. The wavelet
transform has been used by Wen et al. �8� to search for
functional similarity of proteins with low identity and by
Pattini and Cerutti �9� to detect the presence of alpha helices
in the protein secondary structure. Finally, Arneodo et al.
�10� have used the wavelet in various ways, such as doing
fractal analysis of DNA sequences.

Here we propose a wavelet-based approach that makes
use of this technique’s ability to detect multiscale features in
a data series in order to give guidance in determining sec-
ondary protein structures given the primary sequence. The
position and identity of an amino acid and its interaction
with others in the protein chain and with the aqueous envi-
ronment are the determining factors in the final configuration
of the secondary structures. We expect that implicit structure
is encoded in a given protein sequence as a result of its
evolution toward a quickly folding, stable structure as well
as physical constraints placed upon its three-dimensional
structure, such as energetically favorable twist angles, inter-
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action energies between given amino acids, and in particular
the hydrophobicity of a given amino acid. We demonstrate
here that the wavelet transform can be a powerful tool for
uncovering this implicit information in a protein’s sequence
and correlating it with the secondary structure.

The approach we use here is to convert the amino acid
sequence of a protein to a corresponding hydrophobicity se-
quence, since hydrophobic and hydrophilic interactions pro-
vide one of the strongest driving forces for the folding pro-
cess. We do this by coarse graining the converted sequence
via the discrete wavelet transform �DWT� and comparing the
coarse grained signal to randomized sequences to detect ar-
eas of significance. We also define a space-scale correlation
measure between the coarse grained identified structures that
will yield important information about the size �scale� of
secondary structures. The outline of the rest of the paper is as
follows. In Sec. II we describe the discrete wavelet transform
and how to use the resulting course grained information to
yield useful statistical measures. Section III discusses the
protein data selection criteria and conversion of the amino
acid sequence into a hydrophobicity sequence. In Sec. IV we
give our results, and Sec. V contains discussion and analysis.

II. DISCRETE WAVELET TRANSFORM

The discrete wavelet transform is ideal for studying data
in which the extraction of information on both the scale and
position of features is desired. A great deal of literature now
exists on the DWT and its uses. Here we provide a concep-
tual description of the DWT and provide only the key ex-
pressions. For details see �11�.

When a signal is wavelet decomposed, a localized
smoothed and differenced set of coefficients is generated.
The smooth coefficients are a locally coarse grained approxi-
mation to the signal, while the differenced coefficients cap-
ture the local fluctuations about a local mean. The differ-
enced coefficients are stored, while the smoothed coefficients
are passed on for further processing by the wavelet. The
subsequent application of the wavelet transform on the
smoothed signal produces another pair of smoothed and dif-
ferenced set of coefficients which are now at half the reso-
lution. There are half as many smoothed and differenced co-
efficients as in the previous case. The process continues until
there are no more smooth coefficients to transform.

The smoothing and differencing is accomplished by pass-
ing the signal, f�x�, simultaneously through two filters, a
high pass filter, g�x� that gives the differenced set of coeffi-
cients, and a low pass filter, h�x� that gives the smoothed set.
Formally, the filtering process is a convolution between the
signal and the filters. That is,

�l�x� = f�x�h�x� = �
l

f�x�h�2x − l�dx

�l�x� = f�x�g�x� = �
l

f�x�g�2x − l�dx , �1�

where �l and �l are the smoothed and difference coefficient,
respectively. The subscript l indicates that the convolution is

to be performed in a localized region l and the argument on
the filter, 2x− l, accounts for the size of the filter window. In
total, there will be half as many �l and �l as there were data
points in the original signal. A complete reconstruction of the
original data is possible by inverting the process. The process
is shown schematically in Fig. 1.

One advantage of the wavelet transform is that filters at
subsequent resolutions are simply stretched �or dilated� cop-
ies of the original filters. Labeling the resolution as j, we
have that

hj,l�x� = �2 j/L�1/2h�2 jx/L − l� , �2�

and

gj,l�x� = �2 j/L�1/2g�2 jx/L − l� , �3�

where L is the size of the signal. In principle, the filters can
be any function that obeys the admissibility condition

�
R

h�x�dx � � . �4�

However, there is great advantage if the building block func-
tions can be constructed so that they are orthogonal. In the
late 80s, Daubechies found a construction for the these func-
tions that accomplished this �12�. These functions do not
admit a simple algebraic formula. However, Daubechies
proved the simple recurrence relation for the so-called
Daubechies 4 wavelet �higher order constructions are also
possible�,

h�r� = coh�2r� + c1h�2r − 1� + c2h�2r − 2� + c3h�2r − 3� ,

g�r� = − coh�2r − 1� + c1h�2r� − c2h�2r + 1� + c3h�2r + 2� ,

�5�

with initial values

h�0� = 0, h�1� =
1 + �3

2
, h�2� =

1 − �3

2
, h�3� = 0

�6�

that greatly facilitates their construction. The coefficients, cn
are

g(x)

f (x)

φ

ψ

φ

ψ

l

l

l

l

h(x)

g(x)

h(x)

FIG. 1. Schematic representation of the DWT. The low pass
filter, h�x�, produces a local approximation to signal, the high pass
filter, g�x�, captures local fluctuations �after first vertical dashed
line�. The approximation can be further wavelet transform produc-
ing new local approximations and fluctuations at half the resolution
�after second dashed line�.
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co =
1 + �3

4
; c1 =

3 + �3

4
; c2 =

3 − �3

4
; c3 =

1 − �3

4
.

�7�

These basic building blocks, h�x� and g�x�, are translated
across the signal to give the wavelet transform at the current
scale. The transform at a different scale is achieved by dilat-
ing the filters and then translating across the signal. This
process builds a cascade of smoothed and differenced signals
to yield a multiresolution decomposition. Each tier in the
cascade is at half the resolution of the previous tier. The
smoothed signal is a localized average of the signal, while
the differenced signal captures localized fluctuations.

Equations �5� and �6� imply that the convolution of the
signal with the filters is now simple matrix multiplication.
Furthermore, both the convolutions can be done simulta-
neously. That is, for a data vector,

x =�
x0

x1

]

xn

�
J

the smoothed and differenced coefficients are obtained by

�
�0

�0

�1

�1

�2

�2

]

�
J−1

=
1

2�
ho h1 h2 h3 . . .

h3 − h2 h1 − h0 . . .

ho h1 h2 h3 . . .

h3 − h2 h1 − h0 . . .

ho h1 . . .

h3 − h2 . . .

] ] ] ] ] ]

��
x0

x1

x2

x3

x4

x5

]

�
J

,

�8�

where the �l and �l capture the local approximation and
fluctuations of the original data at half the resolution. The
subscripts J−1, l, give the resolution and position at which
the data has been wavelet transformed. The original data are
sampled at resolution J. The process then continues with the
�J−1,l now serving as the data set.

The orthogonal relations for this construction are

� hj,l�x�hj,l��x�dx = �l,l�, �9�

� gj,l�x�gj�,l��x�dx = � j,j��l,l�, �10�

� hj,l�x�gj�,l��x�dx = 0, if j� � j , �11�

where the � are the Kroneker deltas. These orthogonality
relations ensure that information garnered via the DWT re-
mains local. That is, the result of the decomposition at loca-
tion l is independent of location l�. Unlike the Fourier basis
which are not well localized, there is no leakage from one

location to the next. When positional information is impor-
tant, this property of the DWT is extremely useful.

Statistical properties

In addition to its multiresolution property, the DWT can
be used to construct a variety of statistical measures for sys-
tems in which the position and scale information are relevant
to uncovering structure �13,14�. In this work we concentrate
on a correlation measure that measures the relationship be-
tween points displaced a distance in the wavelet scale space.
As we will see, this measure reveals relevant structural in-
formation about the protein.

One of most important correlation measures is the two-
point correlation, 	�r�. The two-point correlation function is
a measure of the excess probability for finding a neighbor a
distance r away. In our case, the neighbors are the quasilo-
calized structures determined by the wavelet decomposition.
Essentially, the two-point correlation function is a measure
of the probability, dP, of finding a pair such that one object
is in volume element dV1 and the other object is in volume
element dV2. That is,

dP = 
o
2�1 + 	�r��dV1dV2, �12�

where 
o is the mean density. One can interpret Eq. �12� as
follows. For a Poisson distribution, the probability that two
cells at separation r are both occupied is 
o

2dV1dV2. For clus-
tering, the probability is modified by the term �1+	�r��.
Therefore, for a Poisson distribution, 	�r�=0. If correlations
exist, 	�r��0 and if data are anticorrelated then −1�	�0.
Determining 	�r� gives clustering above �or below� what one
would expect from a random distribution.

The orthogonality of both sets of wavelet coefficients
gives great flexibility in constructing correlation measures
that are analogs of 	�r�. For example, the reconstructed dis-
tribution at each scale now contains structures that are coarse
grained representations of the original sequence. These
quasilocalized structures serve as objects localized at the dif-
ferent scales. Furthermore, the approximated signal is now
free of some of the high frequency noise, and pronounced
features arise from the signal. We can define correlation mea-
sures between the quasilocalized structures. For our pur-
poses, we are especially interested in detecting correlations
in the hydrophobicity content along a protein because a high
degree of correlation could be a marker of secondary struc-
ture. To that end, we define the space-scale correlation first
introduce by Feng et al. �15,16�

��
, j� =
	� j,l� j,l−l0




	� j,l
2 


. �13�

The � j,l are the smoothed data found using Eq. �8� and 

= l− lo is the distance separating the � j,l in wavelet space at
scale j. � measures the relationship between points displaced
a distance in the wavelet scale space. The coefficients � j,l are
correlated with coefficients l0 away in wavelet space. These
calculations allow us to determine if there are any length
scales that have significant correlations and to compare these
to the lengths of alpha helices, beta strands, and beta sheets
that have been found experimentally.
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III. PROTEIN DATA SELECTION

We tested the above DWT algorithm on the Structural
Classification of Proteins �SCOP� database, release 1.73
�http://scop.mrc-lmb.cam.ac.uk/scop/�. The database contains
over thirty thousand PDB entries organized by secondary
structure type. For this work, we used proteins that contained
both alpha helices and beta sheets. Within SCOP, these
mixed secondary structure proteins come in two forms, A /B
and A+B. The A /B proteins consist mainly of beta-alpha-
beta units in which the alpha linkage allows the beta strands
to be parallel. The A+B proteins have distinct alpha and beta
regions in which the beta strands are linked by short loop
structures that force an antiparallel alignment between within
the beta sheets. The two classes therefore have two differen-
tiating characteristics: �i� the length scales on which the al-
pha and beta units are blended, and �ii� the sequence align-
ment within the beta sheets. We expect these structural
difference to yield somewhat different results from this DWT
analysis.

Of the 9735 proteins in the A+B database, 3509 �about
36%� proteins were used for this analysis. The selection cri-
teria we used was that the protein have only monomeric
chains. Additional proteins were left off our analysis because
they had missing amino acid residues within the primary
structure. The three-dimensional structural descriptions were
also subject to some error, which meant that the exact loca-
tions, lengths, and orientations of the secondary structure
elements within a protein were not necessarily accurate.
There were also apparent labeling errors of secondary struc-
ture position in some of the files that we used. In the A /B
database, 3749 �about 34%� of the 10963 proteins were used
using the same selection criteria as for the A+B database.

IV. WAVELET STRUCTURE DETECTION

In order to extract information from a protein via the
wavelet transform, its amino acid sequence must first be con-
verted into a numeric signal. A common way to do this is to
convert the sequence into its corresponding hydrophobicity.
Hydrophobicity effects are the most influential factors in the
folding process. In general, hydrophobic regions of the pro-
tein occur closer to the interior of the folded structure, away
from the aqueous environment. Thus, the solvation environ-
ment of the protein provides a driving force for spatial sepa-
ration and ordering of different sequence regions according
to their hydrophobicity. Each amino acid can be character-
ized by its tendency to turn inward or outward and can be
assigned a hydrophobicity value. There are several different
hydrophobicity scales commonly in use among researchers
in the field. The three scales used in this project are �Hopp-
Woods—HW, Kyte-Doolittle—KD, and Engelman-
Steitz—ES �17–19��. Hydrophobicity values are generally
determined by the free energy difference 
G between polar
�water� and nonpolar environments for a given amino acid
�20�. The three scales used here are among the most com-
mon. We note that the HW and KD scales have opposite
direction. For the HW scale, a positive value indicates a hy-
drophilic amino acid, whereas for the KD scale a positive
value represents a hydrophobic amino acid. The ES scale is

based on how well a particular amino acid will enter a lipid
bilayer from an aqueous environment. We will see that our
results are not significantly affected by the choice of scale.
Table I shows the hydrophobicity values for the three scales
used in this work.

The result of converting a protein’s amino acid sequence
to its hydrophobicity is a discrete, numeric signal. At the
location of each amino acid in the sequence, we now have
numeric value corresponding to the tendency of that acid to
fold toward or away from its environment. We also create
control data sets by randomly scrambling the order of each
protein’s amino acid sequence 500 times to create 500 ran-
domized instantiations. The frequency of each kind of amino
acid is kept the same in the control data sets as in the parent
protein; only the ordering is altered. This is done to test the
general assumption that the information that controls struc-
ture formation is contained not only in the frequency of the
actual amino acids present in the chain, but also importantly
in the specific ordering of these amino acids along the chain.
Each randomized sequences is transformed into a hydropho-
bicity signal using the same hydrophobicity scale as the par-
ent protein.

The proteins we analyze have primary sequence lengths
ranging from 50 to 1000 amino acids. To use the wavelet
transform on a signal of arbitrary length L, the sequence has
to be lengthened to an integer power of two. Proteins are
zero padded to bring the signal length up to the nearest inte-
ger power of two. Because the wavelet keeps information
localized, zero padding affects only a few coefficients near
the end of the original signal.

Analyses is conducted on the same set of proteins three
times, each time using hydrophobicity values assigned by the

TABLE I. The three hydrophobicity scales used in this work.

Amino acid Kyte-Doolittle Hopp-Woods Engelman-Steitz

ALA 1.8 −0.5 −1.6

ARG −4.5 3.0 12.3

ASN −3.5 0.2 4.8

ASP −3.5 3.0 9.2

CYS 2.5 −1.0 −2.0

GLN −3.5 0.2 4.1

GLU −3.5 3.0 8.2

GLY −0.4 0.0 −1.0

HIS −3.2 −0.5 3.0

ILE 4.5 −1.8 −3.1

LEU 3.8 −1.8 −2.8

LYS −3.9 3.0 8.8

MET 1.9 −1.3 −3.4

PHE 2.8 −2.5 −3.7

PRO −1.6 0.0 0.2

SER −0.8 0.3 −0.6

THR −0.7 −0.4 −1.2

TRP −0.9 −3.4 −1.9

TYR −1.3 −2.3 0.7

VAL 4.2 −1.5 −2.6
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three different hydrophobicity scales. The wavelet decom-
posed signals are used to perform the multiscale reconstruc-
tion and space-scale correlations, and comparisons are made
between the results of the actual protein and the control data.
Figure 2 gives a schematic representation of the entire pro-
cess. Detailed results are presented in the following section.

A. Hydrophobicity versus position

One of the primary objectives of this work is to demon-
strate how wavelet analysis can be used to detect the location
of secondary structures given just the amino acid sequence
�as represented by their hydrophobic content� of a protein.
We begin this analysis by using the multiresolution property
of wavelets to investigate the coincidence of the location of
secondary structures in the amino acid sequence with areas
of high absolute hydrophobicity. The idea is somewhat
analogous to locating genes in DNA in the sense that we
were looking for localized structure embedded in a noisy
background.

We proceed as shown schematically in Fig. 2. The amino
acid sequence in each protein is converted to its correspond-
ing hydrophobic value and wavelet reconstructed at different
resolutions or scales. Each scale is a coarse grained represen-
tation of the previous scale. It is these multiresolution repre-
sentations of the original protein that we subject to further
analysis. In these kinds of analyses, it is common to set a
threshold on the smooth coefficients so that any coefficient
less than the threshold is set to zero. In effect, this denoises
the data at multiple scales. Here we employ a different tactic.
We keep all the coefficients and use the control data to set a
threshold. Our hypothesis is that any signal outside this
threshold is a marker for secondary structure. The procedure
is performed separately on the A+B and A /B data sets.

The coarse graining is accomplished using Eq. �8� �see
also Fig. 1�. A typical example of the resulting reconstructed
hydrophobicity content is shown in Fig. 3. The figure shows
the first four reconstructed levels for the protein 1RJF. This

protein was randomly chosen among those proteins with
relatively few alpha helices to avoid clutter in the figure. The
actual locations of the alpha helices for this protein are also
shown on the plot.

The threshold is set as the 1� range obtained from the 500
random sequences for each protein and are shown as hori-
zontal lines. The 1� threshold implies that there is about a 1
in 3 chance of misidentifying an individual secondary struc-
ture �assuming a normal distribution�. However, the chance
of misidentifying all the secondary structures in a single pro-
tein is about �1 /3�N where N is the number of structures.
Thus the 1−� threshold is a valid cutoff when considering
the entirety of the protein. Each random sequence undergoes
the same multiresolution process described above and is re-
constructed at the same four resolutions. The coarse-grained
hydrophobicity at each point along the sequence is found,
and the coarse-grained value at that point is determined by
averaging the 500 realizations.

Every sequence we analyzed contained some area of sig-
nificance �hydrophobicity content beyond the threshold�.
Some alignments survived multiple reconstructions. This
pointed favorably to a strong connection between hydropho-
bicity and secondary structure formation. Figure 3 shows
multiple areas of significant hydrophobicity or hydrophilicity
through all four passes of the wavelet.

To quantify the efficacy of our technique, we examine the
correspondence between the positions of secondary structure
�alpha helices and beta strands� as identified in the SCOP
database and the results of the wavelet reconstructed se-
quence using binary classification. We begin by dividing the
real protein sequence into regions that consist of either �a� a
contiguous secondary structure or �b� unstructured residues.
We define as true positive �Tp� a secondary structure region
that contains at least one wavelet structure above the thresh-
old anywhere within that region. If the secondary structure

500 Random Permutations

PDB
File

Wavelet

Reconstruct

Correlations

Permute Wavelet

Reconstruct

Correlations

Statistics

Comparisons

FIG. 2. A flow chart for the wavelet decomposition and statisti-
cal analysis for the SCOP proteins. Each protein is wavelet trans-
formed after its amino acid sequence has been converted to a hy-
drophobicity scale. It is then reconstructed at four scales and the
space-scale correlation determined. The amino acid sequence of that
protein is also randomly rearranged and subjected to the same treat-
ment �lower leg of figure�. The results are averaged and compared
to the real protein.
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FIG. 3. The first four wavelet coarse graining using the ES scale
for SCOP database protein, 1RJF. In each panel, the hydrophobicity
content of the protein at a coarser resolution is presented as a func-
tion of amino acid position. The upper left panel is the first coarse
graining, upper right the second, lower left the third, and lower right
the fourth. The dotted lines are the 1−� error bars determined from
the 500 randomizations. The dark horizontal lines located at the
bottom of the panels are the locations and lengths of � helices.
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region contains no wavelet structures, it is counted as a false
negative �Fn�. Similarly, if a region with no secondary struc-
tures contains any wavelet structure above background, it is
counted as false positive �Fp� and if a region with no sec-
ondary structures contains no wavelet structures above the
threshold, it is a true negative �Tn�. It is important to note
that this analysis does not give the probability of an indi-
vidual amino being a part of a secondary structure. Instead
the reconstruction correlates regions of the sequence which
the wavelet has detected as above �or below� the threshold
with the existence of secondary structures somewhere within
that region.

With these definitions we can define the sensitivity �Sn�
and specificity �Sp� as

Sn =
Tp

Tp + Fn
, �14�

Sp =
Tp

Tp + Fp
. �15�

The sensitivity measures the proportion of regions that have
been correctly identified as containing secondary structure,
while specificity measures the proportion of predicted sec-
ondary structures that are real.

For each protein Sn and Sp were calculated for the first
four resolutions. Figures 4 and 5 present the sensitivity and
specificity, respectively, for both data sets. Plotted are the
number of proteins versus either Sn or Sp for the ES hydro-
phobicity scale. The results for the other scales are tabulated
in Table II and are not much different. For the A+B data set,
the average Sn for the data set was 0.70 at j= jmax−1, while it
was 0.74 for the AB set. A comparison to other predictions
will be made in Sec. IV D, but we note here that this on par
with other methods. We prefer to show the entire distribution
of either Sn or Sp rather than just report the average because
it gives a more exhaustive measure of the effectiveness of

our technique, and because, as we will discuss later, it allows
for comparison between different morphological data sets.

The drop off in detection from the first pass of the wave-
let, resolution jmax−1, to the second pass at resolution jmax
−2 occurs because the quasilocalized structures during the
second pass of the wavelet are on a scale twice as large as
the first pass. The wavelength of the analyzing wavelet is too
large to detect the smaller structures. Hence at the jmax−2
scale, only the larger structures are picked up. In Fig. 6, we
show the distribution of the lengths of secondary structures
for the SCOP A/B proteins. The distribution shows a narrow
peak around four amino acids as the most common length for
the secondary structures.

Figure 5 shows the specificity for both data sets for the
first four reconstructions. The average for the A+B data set is
0.72, while it is 0.77 for the A /B. As with the Sn results, our
technique is doing a good job at recognizing regions contain-
ing secondary structure. Note however, that unlike the Sn
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the A+B set, 0.74 for the A /B set.
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FIG. 5. Same as Fig. 4 but now for the quantity Sp. The average
for the A+B data subset is 0.72, and 0.77 for the AB set.

TABLE II. Tabulated are the sensitivity, Sn, specificity, Sp, and
the correlation coefficient, Mc, for all three hydrophobicity scales
and for both data sets.

Scale j

A+B A /B

Sn Sp Mc Sn Sp Mc

ES jmax−1 0.70 0.71 0.70 0.74 0.71 0.72

jmax−2 0.55 0.69 0.61 0.57 0.70 0.63

jmax−3 0.43 0.66 0.52 0.43 0.68 0.53

jmax−4 0.33 0.57 0.42 0.37 0.64 0.47

HW jmax−1 0.75 0.70 0.72 0.75 0.72 0.73

jmax−2 0.55 0.70 0.62 0.54 0.70 0.61

jmax−3 0.39 0.65 0.49 0.38 0.68 0.50

jmax−4 0.33 0.59 0.43 0.27 0.63 0.40

KD jmax−1 0.74 0.71 0.72 0.78 0.72 0.75

jmax−2 0.54 0.70 0.61 0.57 0.70 0.63

jmax−3 0.40 0.67 0.51 0.39 0.67 0.50

jmax−4 0.35 0.61 0.44 0.29 0.64 0.42
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results, there is a smaller drop off as we decrease resolution.
As we coarse grain the protein more, the number of true
positives relative to false positives stays roughly the same.
Thus at larger scales, fewer true positives are detected as are
fewer false negatives. From Eq. �15� we see that this will
cause little change is Sp.

Neither Sn or Sp alone provide a clear indicator of whether
this technique is doing a good job detecting regions contain-
ing secondary structure. A better measure is to find the Mat-
thews correlation coefficient, Mc �21�. This measure is com-
monly used in bioinformatics and can be shown to be
approximately the geometric mean of Sn and Sp �22�. That is

Mc = �Sp · Sn. �16�

We calculated Mc for each protein in both data sets. The
results are shown in Fig. 7, where we once again show the
entire distribution rather than just the average. For j= jmax
−1, the average for the correlation coefficient is Mc=0.70 for
the A+B set while Mc=0.73 for the AB set. The results for

the other resolutions and other hydrophobicity scale are
listed in Table II. At least for the first two resolutions, this
technique is able to recognize regions containing secondary
structures with statistically valid accuracy.

As we hypothesized earlier and as indicated by Figs. 4
and 5, our analysis shows differences between the A /B and
A+B data subsets. To confirm the perceived difference, we
performed a chi-square test comparing the match data results
�i.e., Figs. 4 and 5� between the A /B and A+B subsets. The
test was done for each hydrophobicity scale individually and
at four coarse grainings. All 12 comparisons �four resolu-
tions, three hydrophobicity scales� showed essentially zero
probability that the two distributions were drawn from the
same underlying distribution. Our analysis has clearly de-
tected the differences between these two subsets from just
the amino acid sequence. We attribute the differences to the
larger granularity between the alpha and beta units in the A
+B data than in the A /B proteins. Recall that in the A+B
proteins the alpha and beta regions appear in distinct areas of
protein, while in the A /B proteins, these regions are in close
proximity. The location of secondary structures should there-
fore be more evident �i.e., wavelet reconstruction above
threshold� in the A /B set as these structures occupy longer
contiguous regions than in the A+B set.

B. Space-scale correlation

In the previous section we showed that the wavelet could
pick up regions of significant hydrophobicity at various
scales and that those regions corresponded to the location of
secondary structures. However as pointed out in Sec. II, the
wavelet allows for great flexibility in designing measures to
detect structural features from a signal. We now demonstrate
this by using the wavelet to detect typical length scales.

The coarse graining of the protein hydrophobicity signal
accomplished by the DWT at different resolutions presents
us with filtered versions of the original protein sequence
data. The original amino acid sequence has been transformed
into quasilocalized hydrophobic regions. We can now search
for correlations between these regions to determine if there
are salient or preserved length scales and to compare these
areas to the lengths of alpha helices, beta strands, and beta
sheets. In essence we are assuming that the formation of
secondary structures are being at least partly governed by
nonlocal effects. The nonlocality should be especially preva-
lent via spatial correlation functions once some of the high
frequency signal has been smoothed. The smoothing is ac-
complished by the wavelet multiresolution decomposition.
We now only need a spatial like correlation function to detect
the nonlocality. The space-scale correlation defined in Eq.
�13� gives us the appropriate tool to use.

Figure 8 shows a typical result for the protein 1CDZ in
which we plot the correlation determined by Eq. �13� versus
l0 for four different resolutions of the wavelet. The error bars
again represent 1� for the 500 randomizations. The lengths
of the actual alpha and beta structures in the protein are also
indicated on the plot. A match occurs when the length of a
secondary structure corresponds to the space-scale correla-
tion being above the threshold at that same length. All the
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FIG. 6. Plot of the number of alpha helices and beta strands
versus their length for the SCOP A /B data set. The distribution is
peaked around four amino acids and drops relatively quickly after
about 12 amino acids.
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FIG. 7. The distribution of the Matthews correlation coefficient
for both data sets at the first four resolutions. The average for the
A+B is 0.70, and it is 0.73 for the AB set at j= jmax−1.
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proteins revealed a match between lengths of secondary
structures and lengths at which significant correlation oc-
curred. Many of these significant correlation lengths can be
explained as corresponding to the length of an alpha helix or
a beta sheet, while other areas can be explained by a combi-
nation of structural elements. For example, the top left win-
dow of Fig. 8 shows a significant correlation at a length of
roughly eight amino acids, and the lengths of the two alpha
helices for this protein are nine and ten amino acids. A cor-
relation, ��
l , j�, above the threshold occurs at a length close
to the lengths of actual structures. There remained areas of
significant correlation that were not easily explained by the
lengths of structural elements. However, the connection be-
tween lengths of secondary structure and the lengths of
strong scale correlation of the wavelet coefficients becomes
clear with statistical analysis. The matching of actual second-
ary structure to our space-scale correlation for all our data is
shown in Figs. 9 and 10. We defined a match if the length of
a structure �in this case an alpha helix or a beta strand� fell
within one amino acid of a significant space-scale correlation
��
l , j� �i.e., above or below the threshold�. All three hydro-
phobicity scales were examined to determine the number of
proteins that showed strong matching of structure to hydro-
phobicity peaks. Figures 9 and 10 show the number of pro-
teins versus matched structure percentage for all hydropho-
bicity indexes. The data show that more proteins had �90%
matching structures than any other percent-matched category
for all three hydrophobicity scales and for both data sets.
Using a �75%-matched criterion provides an even stronger
correspondence between the space-scale correlations and the
length scales of the secondary structures. In summary, for the

first wavelet reconstruction for the A /B set, the ES, HW, and
KD hydrophobicity scales showed that 60%, 61.6%, and
58.9% had �90% of their structures matched, respectively,
and that 84.3%, 85.5%, and 84.6% had �75% of their struc-
tures matched, respectively. For the A /B, the ES, HW, and
KD hydrophobicity scales showed that 59.9%, 61.6%, and
62.9% had �90% of their structures matched, respectively,
and that 83%, 83.3%, and 85.8% had �75% of their struc-
tures matched, respectively.

We note that the different hydrophobicity scales result in
more uniform statistics here with the space-scale correlation
analysis than with the previous position detection analysis.
This is potentially explained by our ignoring the beta sheets
�there only beta strands are counted� in the positional analy-
sis of the previous section. That we see such consistent re-
sults here is encouraging and supports that the particular
choice of hydrophobicity scale is not critical.
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FIG. 8. Space-scale correlation at the first 4 resolutions, j
=6,5 ,4 ,3, for the protein 1CDZ calculated using ES scale. The
lengths of the secondary structures are shown as pluses. The solid
line is the space-scale correlation. The dotted line is the average and
1−� error bars calculated from the 500 random realizations. We
drop a vertical line from the secondary structure length to the space-
scale correlation. We count a match if at this location, ��
l , j� for
the real protein is above the threshold. As expected, the random
signal correlations quickly hit 0 �no correlation� and remain there
for all lengths. The real data shows a great deal of fluctuation, with
the fluctuations corresponding well to the lengths of the alpha or
beta structures.
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graining as the wavelength or scale of the analyzing wavelet ex-
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C. Comparison of hydrophobicity scales

As mentioned earlier, the calculations in this project were
performed on three data sets, each set employing a different
hydrophobicity scale. The results produced by these calcula-
tions were very consistent across all three sets. The wavelet
decomposition revealed similar areas of significance for the
three data sets despite initial signal variations caused by the
three different hydrophobicity scales. The different measures
used to define hydrophobicity in each of the three scales
examined here do not critically affect the correlations de-
tected by wavelet analysis.

D. Comparison to other methods

Direct comparison to other methods of secondary struc-
ture prediction is very difficult because our method relies on
the wavelet’s coarse graining property. In identifying the po-
sition of alpha helices, individual amino acids are replaced
by quasilocalized structures corresponding approximately to
a hydrophobicity average near the original amino acid. In the
second part of our analysis, when we look for correlations in
wavelet space, the length of any secondary structure element
is what is detected.

The best predictors of secondary structure are around 80%
according to the Evaluation of Automatic protein structure
prediction �EVA� website �23�. Programs such as PHD �24�,
PSIPRED �25�, or PROTEUS �26� use neural network methods
and searches for homologous sequences with known struc-
ture to give a prediction of the secondary structure of each
amino acid in a sequence �often along with a measure of the
confidence level of the prediction�. The wavelet-based tech-
nique described here is not meant to yield a specific predic-
tion for each residue and thus cannot be compared directly to
these techniques. As presented here, we have only examined
the correlations between locations of significant hydropho-
bicity as discovered by wavelet analysis and the locations of
real secondary structures in proteins of known structure. Ap-
plications and consequences of our approach are discussed in
the following section.

V. DISCUSSION

Our goal was to find some meaningful pattern of informa-
tion located in the primary structures of the proteins that we
analyzed. Our results are encouraging, but must be treated as
a preliminary effort. The approach of utilizing the discrete
wavelet transform to unlock position and scale information
by examining the hydrophobicity “signal” of these proteins
is a relatively new idea and shows promise as technique that
can reveal otherwise hidden structural information.

Our calculations suggest relationships involving both the
locations of secondary structures and the length scales at
which these structures emerge. We believe that this DWT
approach sheds light on the scale dependence of secondary
structure formation.

Specifically, we find that there exist correlations relating
areas of strong hydrophobicity to physical structures within a

protein. The number of secondary structures roughly matches
the number of significant hydrophobicity peaks at certain
scales. Most of the secondary structures in the proteins we
examined had lengths that matched the length scales at
which strong hydrophobicity correlations existed along the
amino acid chain. These results prove to be essentially inde-
pendent of the specific hydrophobicity scale used. Despite
differences in the methods used to create these scales, our
results suggest that the three scales are consistent with one
another.

Significance levels were measured against randomized
data that had the same number and kind of amino acids. This
demonstrates that positional information in the amino acid
sequence is critical in determining secondary structure for-
mation, and wavelet analysis is able to distinguish different
orderings at different length scales. Using a 1� deviation
from the randomized data provides a robust measure of sig-
nificant measure of structure within the amino acid sequence
that makes up the protein.

We suggest that are several possible avenues for the
wavelet analysis presented here to find application in the
future. First, the results of the positional analysis could be
used to augment other techniques to improve their accuracy
of secondary structure prediction even further. For instance,
PROTEUS uses a combination of three different secondary
structure predictors in concert with a neural network classi-
fier and homologous pattern search �27�. Results of the
wavelet technique could also be combined with this array of
technique to improve the net accuracy even further. Second,
the results of both the positional analysis and the space-scale
analysis at different scales could be used to create a finger-
print or signature of a given protein. Such wavelet finger-
prints could then be used to identify different families of
proteins and to classify which family a given protein might
be in. Third, the present technique could also be potentially
useful in tertiary structure prediction. For instance, the wave-
let may provide information about regions of a protein that
are likely to undergo large folds and bends. Since the folding
processes brings together residues that are far away in se-
quence space, we can consider that meaningful correlations
will arise between the results of multiscale analysis of the
one-dimensional �1D� sequence of a protein and measures of
three-dimensional �3D� structure of the protein in its native
state.

Lastly, this approach is very fast. We were able to produce
the wavelet reconstructions and space-scale correlations for
both the original proteins and their 500 randomizations for
the approximately 3500 proteins in each data set in about an
hour per set using a 2.0 GHz Power Mac G5.

Despite these positive results, some of the data remain a
mystery. Many of the significant hydrophobic regions did not
correspond to any secondary structure. It was not clear
whether combinations of different secondary structures could
account for these data. Further analysis on larger protein da-
tabase sets is underway in order to better understand the
potential of this technique.
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